Features

- The DPC-100 DC Production Controller offers two user selectable modes of operation, latching, for pulse type input signals, and non-latching, for continuous input signals.
- The DPC-100 is intended for on/off or open/close control of DC valve actuators rated for 10-30VDC and up to 10 amps of running current.
- The DPC-100A version has an adjustable current trip and reverse torque setting that is useful for wedge gate valves, expanding gate valves, needle valves, high performance butterfly valves, triple offset butterfly valves, or other valves that require torque seating instead of position seating.
- The DPC-100 version has a fixed 12 amp current trip to protect the motor, actuator, and valve from excessive electrical current and mechanical force, but it is not recommended for torque seating valves.
- A wide range of AC and DC control inputs ranging from 1.9VAC / 2.6VDC up to 130VAC / 130VDC can be used.
- Electronic surge limiting reduces motor inrush current allowing for smaller size batteries/power supplies and wire.
- Switchable 2-wire or 3-wire control (2-wire control not available in latching mode).

- Electrically isolated inputs that allow multiple units to be easily paralleled to the same control signal.
- Local/remote modes allow for manual control using onboard buttons in addition to the external control signals.
- Electronic brake reduces the need for a mechanical brake.
- Low standby current maximizes battery life.

NOTE: Latching mode is only available after serial number 2630. Contact us to have older units updated.
Non-Latching Mode Features
Latching Mode Features
(Instructions start on page 2)
(Instructions start on page 14)

- Often used with float switches to control the fill level of storage tanks.
- Inputs respond to continuous signals only. Pulsed signals only result in movement during the signal pulse.
- Independently adjustable open and close input delays of up to 12 seconds.
- Amount of breakaway torque is adjustable from 100% to 200\% of standard torque in switch selectable direction.
- When motor is moving in direction of increased breakaway torque, breakaway torque is applied for whole move.
- No action on power up - controller waits for command before moving.
- Both 2-wire and 3-wire control signals can be used.
- Often used for electric actuator retrofits of pneumatic actuators that are controlled by latching solenoid valves.
- Inputs respond to pulsed signals only. Continuous signals will not result in motor movement
- No delay between input signal and motor movement. Movement starts immediately after end of the input pulse.
- Breakaway torque is independently adjustable in both directions from 100% to 200% of standard torque.
- Breakaway torque is time limited for a user adjustable time of up to twelve seconds.
- Switch selectable options to move open, move closed, or wait for a command on power up.
- Only 3-wire control is available in latching mode.

[S1-1] On for latching mode.

Non-Latching Mode Outline

P1 - P3 Pot Settings

Open Delay (P1)	Close Delay (P2)	Breakaway Torque (P3)
(time in seconds)		

S1 Dip Switch Settings

[S1-4] Local Remote Switch Enable: On: Remote mode enabled.
Off: Local mode enabled.
[S1-3] 2 or 3-Wire Control Enable:
On: 2-wire control enabled.
Off: 3-wire control enabled.
[S1-2] Increased Breakaway Torque Direction:
On: Torque is increased in the closed direction.
Off: Torque is increased in the open direction.
[S1-1] Latching / Non-Latching Controller Mode:
On: Latching controller mode (see page 14).
Off: Non-Latching controller mode.

DPC-100 (fixed 12 amp current trip) DPC-100A (adjustable current trip)

Electrical Connections

\llcorner To Control Signal
-

Trip Connector

(DPC-100A only)

Optional external reset button

Current Trip Settings

Current trip amps $=$ voltage measured across test point TP2 divided by 0.416 for all ranges (3A, 6A and 12A).

Block Diagram

Non-Latching Mode Introduction

The Peaktronics DPC-100 DC Production Controller is used to interface common electrical control signals to DC actuators. The wide operating range of the DPC-100 (10 to 30 VDC with loads up to 10A continuous or 60A locked rotor) allows for operation in a large number of actuator applications. The unit provides all necessary motor drive, protection, and interface circuitry. For added protection, motor outputs are electrically isolated from control inputs.

A wide range of external control signals can be used to open and close the actuator. The unit accepts commonly used 120VAC signals from PLC modules, relay circuits, triac outputs, or solid state relay circuits. Alternatively, signals from a number of electronic sources, including TTL, CMOS, analog drivers, open collector outputs, and other low voltage AC and DC outputs can be used.

In non-latching mode, an input delay of up to twelve seconds is independently adjustable for both open and close. As some DC motors cannot reverse direction instantaneously, there is a built-in one second delay after all motor movements.

Non-latching mode also offers a breakaway torque setting that increases the torque in a user selectable direction, allowing the unit to seat a valve to a preset torque (set by the current trip), while providing extra torque in the opposite direction to reliably open the valve (see Torque Seating Valves on page 7).

The unit can be configured for 2-wire or 3-wire control. In 2-wire control, the control signal is applied to the open input to drive the actuator open. When the control signal is removed, or driven to 0 V , the actuator will close. In 3-wire control, both the open and close control signals
are used to drive the actuator toward open or closed as desired. When both signals are removed, or driven to 0 V , the actuator remains at its last position.

The unit also features a red LED indicator (for the open output), a green LED indicator (for the close output), a user replaceable fuse, two removable screw terminal strips for easy servicing, and on-board pushbuttons to manually open or close the actuator.

A feedback position transmitter (such as the Peaktronics XMA-105, XMA-106, or XMA-107) can be used to return a position feedback signal from a feedback potentiometer (see pages 9-10).

All options are easily set using on-board DIP switches and potentiometers. On-board LEDs indicate a variety of conditions: motor output on, limit switch reached, low battery voltage, and battery over voltage (see Indicators and Fault Conditions on page 6).

While the DPC-100 has a fixed 12A current trip feature, the DPC-100A allows the current trip to be adjusted from 0 to 12A. The adjustable current trip is useful for limiting torque, torque seating valves, and protecting motors that have less than 12A locked rotor current. The DPC-100A also has a yellow LED current trip indicator and a set of form-C contacts that can be used to power external trip fault alarms or lights.

Non-Latching Mode Description

The DPC-100 is rated for motors with up to 60A locked rotor or 10 A running current and requires $10-$ 30VDC for power. The unit is easily mounted with two screws and is equipped with removable screw terminals that provide for easy field wiring. The unit's size and mounting allow for easy upgrade from the RCM-101x series.

The DPC-100A is the same as the DPC-100, but replaces the fixed 12 A current trip with an adjustable 0 12 A current trip. It also has connections for an external trip reset switch and a form-C contact for current trip indication.

The current trip setting can protect the motor from excessive loads. Once tripped, the current trip setting can be reset by reversing motor direction or connecting the reset input to GND.

Power / Signal (J2)

The DC power source positive terminal is connected to BATTERY POSITIVE (J2-1) while the negative is connected to BATTERY NEGATIVE (J2-2). When the DPC-100 is mounted to a metal bracket or a metal actuator case, the DPC-100 chassis provides an earth ground connection to the actuator body. When the actuator body is non-metallic or electrically isolated from earth ground, a suitable earth ground must be connected to the EARTH GROUND (J2-3) contact to prevent static voltage buildups.

Transferring DC power can be inefficient; therefore, care should be taken to use adequate wire sizes. The size of wire required depends on the locked rotor motor current and the length of wire to be used (see the Wire Table on the last page for more information).

The control signal to open the actuator is connected to either OPEN AC HI (J2-7) or OPEN DC/AC LO (J2-9) (do not connect both inputs at the same time) using OPEN COMMON (J2-5) as the return. The close control signal is connected to either CLOSE AC HI (J2-6) or CLOSE DC/AC LO (J2-8) (do not connect both at the same time) using CLOSE COMMON (J2-4) as the return.

The AC HI inputs are suitable for 120 VAC control signals, while the DC/AC LO inputs are used for either DC electronic signals (such as TTL, CMOS, etc.) or AC control signals up to 90VAC. Open collector control signals can also be used (see Block Diagram on page 3, Wiring Diagrams on pages 10-12, and Non-Latching Mode Specifications on page 8).

Actuator (J1)

The actuator motor and limit switches are connected to J1 as shown in the Block Diagram on page 3. The motor should be connected to MOTOR 1 (J1-1) and MOTOR 2 (J1-2), but polarity must be observed to ensure the motor turns in the correct direction (see Reverse Acting Actuators on page 7). Limit switches should be wired to J1 pins 3, 4, and 5 as shown in the Block Diagram on page 3.

Note that when the DPC-100 moves the motor in the open direction, it applies positive voltage to MOTOR 1 (J1-1) and negative voltage to MOTOR 2 (J1-2). The motor polarity is reversed when moving in the close direction. Make sure to wire the motor with the correct polarity, and make sure the open and close limit switches are wired correctly as well.

Failure to wire either the motor or the limit switches correctly can cause the actuator to travel beyond the limit switches possibly damaging the actuator (see Reverse Acting Actuators on page 7). Also, as MOTOR 1 (J1-1)
and MOTOR 2 (J1-2) are connected directly to the battery or power supply when the motor is running, care should be taken not to connect these pins to any other terminals.

In local mode, the pushbuttons can be used to check the motor and limit switch wiring. With the actuator near the middle of travel (away from the limit switches), pressing the open button should move the actuator in the open direction. Pressing the close button should move the actuator in the close direction. If the motor moves in the wrong direction, reverse the two motor connections.

To test the limit switches, use the pushbuttons to move the actuator in the open and close directions while manually pressing the corresponding limit switch. Make sure that tripping the close limit switch stops the actuator from moving in the close direction, and the open limit switch interrupts movement in the open direction.

The limit switches are normally closed (conducting). The corresponding limit switch will open or break the connection when the actuator is driven fully open or closed. Therefore, the limit switch terminals (J1-4, J1-5) must be connected to LIMIT SWITCH COMMON (J1-3) for the DPC-100 to control the motor outputs - otherwise the DPC-100 will think a limit switch has tripped and will refuse to move farther in that direction. If there are no limit switches providing these connections, you must connect these terminals together for proper operation.

The DPC-100 provides a dynamic braking feature that can eliminate the need for a mechanical brake. When the DPC-100 turns off the motor outputs, MOTOR 1 and MOTOR 2 are internally connected to BATTERY NEGATIVE; this effectively shorts the motor leads, thus braking the motor. When power is removed from the DPC100 , the electronic braking feature is disabled.

In some applications, a brake is required for mechanical reasons, such as avoiding back driving the motor. The DPC-100 is suitable for powering most brakes - consult the actuator manufacturer for more information.

Input Delays (Non-Latching Mode Only)

The DPC-100 provides independently adjustable input delays for both the open and close control signals see Control Adjustments under Non-Latching Mode Specifications on page 8 for the delay period and NonLatching Mode Outline on page 2 for

(time in seconds) the location. When both outputs are off and a control input signal is applied, the input delay setting causes a delay in turning on the associated output. If the control signal is removed before the end of the delay period, the associated output will not turn on.

Open and Close Pushbuttons

The DPC-100 allows for manual operation of the actuator by setting the S1-4 switch to local mode as shown below - see Non-Latching Mode Outline on page 2 for the switch location.

[S1-4] Local Remote Switch Enable:
On: Remote mode enabled. Off: Local mode enabled.

In local mode, pressing the open button will turn on the MOTOR 1 (open) output (J1-1), while pressing the close button turns on the MOTOR 2 (close) output (J1-2).

The input delays continue to function in local mode, affecting button operation just like they do for a control signal - refer to Input Delays (this page) for more details. Also, the 2-wire mode setting will be ignored while in local mode to allow for better manual control of valve position. To protect against turning on both outputs at the same time, the DPC-100 will not turn on one of the outputs until the other output has turned off. Additionally, if both control signals are applied at the same time, the unit will turn off both outputs and the motor will not move.

2-Wire / 3-Wire Control Inputs

Setting S1-4 to the remote position disables the onboard open and close buttons and allows control of the actuator by the DPC-100 control inputs. S1-3 is used to configure the unit for either 2-wire or 3-wire control - see Non-Latching Mode Outline on page 2 for the location and setting of S1-3 and S1-4.

In 3-wire control, the open input signal is used to turn on the open output, and the close input signal is used to turn on the close output.

In 2-wire control, only the open signal is used, and the close input terminals must not be connected. In 2-wire control, the close output will always be turned on until the open signal is applied, at which time the close output is turned off and the open output turns on.

Indicators and Fault Conditions

The on-board green and red LED indicators provide the user with information about the status of the actuator. The table below provides a list of indications and their associated conditions.

Red	Green	Condition
On	Off	Motor 1 is on (moving open)
Off	On	Motor 2 is on (moving closed)
Flash	-	Open limit switch is open
-	Flash	Close limit switch is open
Blink	Blink	Low battery voltage
On	On	Overvoltage

Note: Blink rate is 0.4 seconds on $/ 0.4$ seconds off.
Flash is much faster at 10 on/off cycles per second.

Motor Output ON - When conditions are normal, the red LED indicator turns on when the MOTOR 1 (open) output is positive, and the green LED turns on when the MOTOR 2 (close) output is positive.

Limit Switch - Many actuators are equipped with limit switches at their open and closed positions which stop the motor to prevent mechanical damage. The actuator's limit switches should be set for the range of motion required by the application.

When the open limit switch disconnects OPEN LIMIT SWITCH (J1-4) from LIMIT SWITCH COMMON (J1-3), the red LED will flash and the MOTOR 1 (open) output is disabled. Likewise, when the close limit switch disconnects CLOSE LIMIT SWITCH (J1-5) from LIMIT SWITCH COMMON (J1-3), the green LED will flash and the MOTOR 2 (close) output is disabled.

Low Battery Voltage and Overvoltage - If the supply voltage drops below 10 V , the motor outputs are disabled and both LEDs will blink indicating a low voltage condition. After the voltage returns, there is a retry delay before normal operation resumes. In local mode the retry delay is always three seconds. In remote mode, the delay time increases each time motor movement is interrupted by low voltage. This helps protect the battery and hardware. Once a movement is completed without a low voltage condition, the retry delay is reset to three seconds.

If the voltage exceeds 30 V for more than a second, the motor outputs are disabled and both LEDs will turn on to indicate an overvoltage condition. Normal operation resumes after the voltage drops below 30 V .

Current Trip Setting

The DPC-100 monitors the motor current and turns off the motor if the motor current exceeds 12A. The motor remains off until the actuator is commanded to move in the opposite direction from the one that caused the current trip condition.

For actuators using smaller motors with less than 12A stall current, the DPC-100A, with its adjustable current trip, may be helpful. The trip setting is useful for limiting the torque applied to the actuator's load.

The DPC-100A has a yellow LED to indicate a trip condition and an isolated set of form-C contacts that can be used to indicate trip faults. The trip adjust pot and trip range jumper set the trip setting as shown below - see Non-Latching Mode Outline on page 2 and Block Diagram on page 3 for more information.

Current Trip Amps	Volts Across TP2
0.5	0.208
1	0.416
1.5	0.624
2	0.832
3	1.248
4	1.664
5	2.080
6	2.496
8	3.328
10	4.160
12	4.992
DPC-100A only. Current trip amps = voltage measured across test point TP2 divided by 0.416 for all ranges (3A, 6A and 12A).	

The DPC-100A also has an on-board trip reset button and supports an external trip reset button. See NonLatching Mode Outline on page 2, Block Diagram on page 3, and Non-Latching Mode Specifications on page 8 for more information.

The current trip setting should be adjusted to a comfortable level above the running current expected for the actuator under load. When the motor current exceeds
the trip setting, the motor is turned off, the yellow LED is turned on, and the form- C contact switches.

The surge limiting of the DPC-100 combined with its current trip feature significantly reduces the maximum current needed by the motor, allowing for a less expensive and smaller battery/power supply and wire gauge than would normally be required.

Without this current reduction, a costly highcapacity battery/power supply would be essential to avoid collapse of the supply voltage. The battery/power supply can now be rated for either 20% of the locked rotor current, or the running current of the motor, whichever is greater. See the Wire Table on the last page for the recommended wire gauge.

If the trip setting is used to limit torque, note that the actuator and valve components (gears, couplings, seats, etc.) also place a load on the motor. These components will vary with temperature and age, and therefore the torque load will vary accordingly.

Torque Seating Valves (DPC-100A only)

The DPC-100A has a reverse torque adjustment that is useful for applications where seating a valve to a consistent preset torque is needed. The valve seating torque is determined by the trip range jumper and trip adjust pot. Test point TP2 can be used to accurately set the torque to a consistent value in either the field or a production environment (see Current Trip Setting on page 6).

When torque seating a valve, the motor is driven until the current trip is activated. The close limit switch must be positioned just beyond the current trip point to ensure that the current trip is controlling the valve seating torque, and that the limit switch isn't stopping the motor before the desired torque is applied to closing the valve.

To verify a valve is torque seated, make sure the yellow current trip LED is lit after the actuator stops moving. If the yellow LED is off, and either the red or green (open or close) LED is flashing, the limit switch tripped before the valve could be properly torque seated.

Once torque seated, some valves need extra torque to open reliably. The reverse torque pot (P 3) is used to set the maximum torque that will be applied to open the valve. The reverse torque should be

(percent of forward torque) (DPC-100A only, 12A max) set to a level that reliably opens the valve while still protecting the actuator. The reverse torque pot (P3) is adjustable in a range from 100% to 200% of the torque used to close the valve (12A maximum).

The direction of the reverse torque is controlled by dip switch S1-2 as shown below - see Non-Latching Mode Outline on page 2 for the switch location.
$\left.\begin{array}{|llll|}\hline 1 & 2 & 3 & 4 \\ \hline \\ \sim & 2 & 3 & 4 \\ \hline \\ \hline\end{array}\right]$
On: Torque is increased in the closed direction.
Off: Torque is increased in the open direction.

Reverse Acting Actuators

In reverse acting actuators, the motor turns clockwise (looking down from the top of the actuator) when opening the valve - see below.
(Arrows show direction of opening valve)

Reverse Acting

When converting a direct acting actuator to a reverse acting actuator, three changes in wiring must be made:

1) Reverse the motor wires connected to MOTOR 1 (J1-1) and MOTOR 2 (J1-2).
2) Reverse the limit switch wires connected to OPEN LIMIT SWITCH (J1-4) and CLOSE LIMIT SWITCH (J1-5).
3) If you are using a feedback transmitter (XMA-10x series), reverse the feedback potentiometer's red and black wires at the transmitter and recalibrate the transmitter.

Non-Latching Mode Specifications

Power Requirements

Operating voltage: 10 to 30 VDC.
Operating current (motor on): 74mA typical.
Standby current (motor off): 30 mA typical.
Operating current (motor off, trip LED on):
56mA typical (DPC-100A only).
Fuse type: 10A TR5 time lag 374 (replaceable).

AC HI Control Signal Inputs

Maximum input voltage:
130VAC $50 / 60 \mathrm{~Hz}(20 \mathrm{~mA}$ typical @ 60 Hz).
Minimum assured on state input voltage: $85 \mathrm{VAC} 50 / 60 \mathrm{~Hz}(13 \mathrm{~mA}$ typical @ 60 Hz).

Maximum assured off state input voltage: 60VAC $50 / 60 \mathrm{~Hz}(8.8 \mathrm{~mA}$ typical @ 60 Hz$)$.

Maximum assured off state input current: $7.5 \mathrm{~mA} @ 60 \mathrm{~Hz} / 6 \mathrm{~mA} @ 50 \mathrm{~Hz}$.

DC/AC LO Control Signal Inputs
Maximum input voltage:
130VDC (4mA typical).
90VAC $50 / 60 \mathrm{~Hz}$ (3.3mA typical).
Minimum assured on state input voltage:
2.6VDC (0.4 mA maximum), TTL compatible.
1.9VAC (0.16 mA typical).

Maximum assured off state input voltage:
1.8 VDC .
1.3VAC.

Maximum assured off state input current:
DC: 0.25 mA
AC: 0.20 mA

DC Motor Outputs

Maximum running current: 10 A .
Motor current trip threshold: DPC-100: 12A (fixed). DPC-100A: 0 to 12A (adjustable).

Motor current measurement resolution: 21 mA typical.

Trip Connector (DPC-100A only)

Trip relay output (form C contacts):
1A @ 24VDC / 0.5A @ 125VAC non-inductive.
On-board trip reset switch*:
Pushbutton located on unit.
External trip reset input*:
Normally open switch: 1mA @ 5VDC.
Open collector output: V ce $<0.5 \mathrm{~V} @ 1 \mathrm{~mA}$.
*One reset per button press or contact closure.

Control Adjustments

Open delay (P1): 0.02 to 12 seconds.
Close delay (P2): 0.02 to 12 seconds.
Reverse torque (P3): 100\% to 200\% of forward torque.

Environmental

Operating temperature range: $0^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$.
Storage temperature range: $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
Relative humidity: 0\% to 90% (noncondensing).
Recommended System Wiring

Wiring Diagrams

Feedback and Input Signal Configurations

Wiring Diagrams

Output Configurations

Wiring Diagrams
 Non-Latching Mode Special Applications

Connecting a Single Float Valve Using 2-Wire Mode and DC/AC LO Inputs

Connecting Dual Float Valves Using 3-Wire Mode and DC/AC LO Inputs

This is the end of the
DPC-100(A) Non-Latching Mode Instructions (except for the Wire Table on the back page).

The DPC-100(A) Latching Mode Instructions start on the next page.

NOTE: Latching mode is only available after serial number 2630. Contact us to have older units updated.

Latching Mode Outline

DPC-100 (fixed 12 amp current trip)
DPC-100A (adjustable current trip)

Electrical Connections

\llcorner To Control Signal
Trip Connector
(DPC-100A only)

N.C.

RESET (percent of trip adjust) (time in seconds) (DPC-100A only,

12A max)

S1 Dip Switch Settings

Breakaway Torque
Time (P3)

[S1-3] Start Position On Power Up ${ }^{\dagger}$:
On: Move to closed position
Off: Move to open position.
${ }^{\dagger}$ Only used when switch S1-2 is on.

[S1-2] Action On Power Up:

On: Move to start position.
Off: Wait for command before moving.
[S1-1] Latching / Non-Latching Controller Mode:
On: Latching controller mode.
Off: Non-Latching controller mode (see page 2).
(percent of trip adjust)
(DPC-100A only, 12A max)

Block Diagram

Latching Mode Introduction

The Peaktronics DPC-100 DC Production Controller is used to interface common electrical control signals to DC actuators. The wide operating range of the DPC-100 (10 to 30 VDC with loads up to 10A continuous or 60A locked rotor) allows for operation in a large number of actuator applications. The unit provides all necessary motor drive, protection, and interface circuitry. For added protection, motor outputs are electrically isolated from control inputs.

A wide range of pulsed control signals can be used to open and close the actuator. The unit accepts commonly used 120VAC signals from PLC modules, relay circuits, triac outputs, or solid state relay circuits. Alternatively, signals from a number of electronic sources, including TTL, CMOS, analog drivers, open collector outputs, and other low voltage AC and DC outputs can be used.

As some DC motors cannot reverse direction instantaneously, there is a built-in one second delay after all motor movements.

The DPC-100A in latching mode has a breakaway torque setting with independently adjustable torque in both directions, allowing the unit to seat a valve to a preset torque (set by the current trip), while providing extra breakaway torque in the opposite direction to reliably open the valve - see Torque Seating Valves on page 19.

Only 3 -wire control is available in latching mode. A signal pulse applied to the open input will drive the actuator open, while a signal pulse applied to the close input will drive the actuator closed.

The actuator will only move at the end of the command pulse when there is no longer a command signal present - continuous signals will not move the actuator.

Once moving, the actuator will keep moving in the desired direction until a limit switch is tripped, a current trip occurs (for torque seating valves), or a new command input is received.

The unit features a red LED indicator (for the open output), a green LED indicator (for the close output), a user replaceable fuse, two removable screw terminal strips for easy servicing, and on-board pushbuttons to manually open or close the actuator.

A feedback position transmitter (such as the Peaktronics XMA-105, XMA-106, or XMA-107) can be used to return a position feedback signal from a feedback potentiometer - see pages 21-22.

All options are easily set using on-board DIP switches and potentiometers. On-board LEDs indicate a variety of conditions: motor output on, motor output on with an increased breakaway torque limit, limit switch reached, low battery voltage, and battery over voltage.

While the DPC-100 has a fixed 12A current trip feature, the DPC-100A allows the current trip to be adjusted from 0 to 12 A . The adjustable current trip is useful for limiting torque, torque seating valves, and protecting motors that have less than 12A locked rotor current. The DPC-100A also has a yellow LED current trip indicator and a set of form-C contacts that can be used to power external trip fault alarms or lights.

Latching Mode Description

The DPC-100 is rated for motors with up to 60 A locked rotor or 10 A running current and requires $10-$ 30VDC for power. The unit is easily mounted with two screws and is equipped with removable screw terminals that provide for easy field wiring. The unit's size and mounting allow for easy upgrade from the RCM-101x series.

The DPC-100A is the same as the DPC-100, but replaces the fixed 12 A current trip with an adjustable 0 12 A current trip. It also has connections for an external trip reset switch and a form-C contact for current trip indication.

The current trip setting can protect the motor from excessive loads. Once tripped, the current trip setting can be reset by reversing motor direction or connecting the trip module reset input to GND.

Power / Signal (J2)

The DC power source positive terminal is connected to BATTERY POSITIVE (J2-1) while the negative is connected to BATTERY NEGATIVE (J2-2). When the DPC-100 is mounted to a metal bracket or a metal actuator case, the DPC-100 chassis provides an earth ground connection to the actuator body. When the actuator body is non-metallic or electrically isolated from earth ground, a suitable earth ground must be connected to the EARTH GROUND (J2-3) contact to prevent static voltage buildups.

Transferring DC power can be inefficient; therefore, care should be taken to use adequate wire sizes. The size of wire required depends on the locked rotor motor current and the length of wire to be used - see the Wire Table on the last page for more information.

The control signal to open the actuator is connected to either OPEN AC HI (J2-7) or OPEN DC/AC LO (J2-9) (do not connect both inputs at the same time) using OPEN

COMMON (J2-5) as the return. The close control signal is connected to either CLOSE AC HI (J2-6) or CLOSE DC/AC LO (J2-8) (do not connect both at the same time) using CLOSE COMMON (J2-4) as the return.

The AC HI inputs are suitable for 120 VAC control signals, while the $\mathrm{DC} / \mathrm{AC}$ LO inputs are used for either DC electronic signals (such as TTL, CMOS, etc.) or AC control signals up to 90 VAC . Open collector control signals can also be used - see Block Diagram (page 15), Wiring Diagrams (pages 22-24), and Latching Mode Specifications (page 20).

Actuator (J1)

The actuator motor and limit switches are connected to J1 as shown in the Block Diagram on page 15. The motor should be connected to MOTOR 1 (J1-1) and MOTOR 2 (J1-2), but polarity must be observed to ensure the motor turns in the correct direction - see Reverse Acting Actuators (page 19) for more information. Limit switches should be wired to J1 pins 3, 4, and 5 as shown in the Block Diagram (page 15).

Note that when the DPC-100 moves the motor in the open direction, it applies positive voltage to MOTOR 1 (J1-1) and negative voltage to MOTOR 2 (J1-2). The motor polarity is reversed when moving in the close direction. Make sure to wire the motor with the correct polarity, and make sure the open and close limit switches are wired correctly as well.

Failure to wire either the motor or the limit switches correctly can cause the actuator to travel beyond the limit switches possibly damaging the actuator - see Reverse Acting Actuators (page 19) for more info. Also, as MOTOR 1 (J1-1) and MOTOR 2 (J1-2) are connected directly to the battery or power supply when the motor is
running, care should be taken not to connect these pins to any other terminals.

In local mode, the pushbuttons can be used to check the motor and limit switch wiring. With the actuator near the middle of travel (away from the limit switches), pressing the open button should move the actuator in the open direction. Pressing the close button should move the actuator in the close direction. If the motor moves in the wrong direction, reverse the two motor connections.

To test the limit switches, use the pushbuttons to move the actuator in the open and close directions while manually pressing the corresponding limit switch. Make sure that tripping the close limit switch stops the actuator from moving in the close direction, and the open limit switch interrupts movement in the open direction.

The limit switches are normally closed (conducting). The corresponding limit switch will open or break the connection when the actuator is driven fully open or closed. Therefore, the limit switch terminals (J1-4, J1-5) must be connected to LIMIT SWITCH COMMON (J1-3) for the DPC-100 to control the motor outputs - otherwise the DPC-100 will think a limit switch has tripped and will refuse to move in that direction. If there are no limit switches providing these connections, you must connect these terminals together for proper operation.

The DPC-100 provides a dynamic braking feature that can eliminate the need for a mechanical brake. When the DPC-100 turns off the motor outputs, MOTOR 1 and MOTOR 2 are internally connected to BATTERY NEGATIVE; this effectively shorts the motor leads, thus braking the motor. When power is removed from the DPC100 , the electronic braking feature is disabled.

In some applications, a brake is required for mechanical reasons, such as avoiding back driving the motor. The DPC-100 is suitable for powering most brakes - consult the actuator manufacturer for more information.

Open and Close Pushbuttons

The DPC-100 allows for manual operation of the actuator by setting the $\mathrm{S} 1-4$ switch to local mode as shown below - see Latching Mode Outline on page 14 for the switch location.

In local mode, pressing the open button will turn on the MOTOR 1 (open) output (J1-1), while pressing the close button turns on the MOTOR 2 (close) output (J1-2).

Latching mode is turned off in local mode to provide better control of the actuator during setup and testing. In local mode the motor moves only while the open or close button is pressed and stops when the button is released.

To protect against turning on both outputs at the same time, the DPC-100 will not turn on one of the outputs until the other output has turned off. Additionally, if both control signals are applied at the same time, the unit will turn off both outputs.

Setting S1-4 to the remote position disables the onboard open and close buttons and allows control of the actuator by the DPC-100 control inputs. See Latching Mode Outline on page 14 for the location and setting of switch S1-4.

S1-2 and S1-3 are used to set an optional action on power up. If switch S1-2 is on, switch S1-3 will determine whether the actuator will move to open or closed on startup. If switch S1-2 is off, the unit will not move on power up until a command to move is received. See Latching Mode Outline on page 14 for the location and setting of S1-2 and S1-3.

$$
\begin{array}{|llll}
\hline 1 & 2 & 3 & 4 \\
\hline
\end{array}
$$

[S1-2] Action On Power Up:
On: Move to start position.
Off: Wait for command before moving.

The DPC-100 expects pulsed control signals to open and close the actuator. Pulses must be at least 100 milliseconds long, and if the open and close input pulses overlap, the actuator will move in the direction of the last pulse to turn off. Motion starts at the end of the pulse continuous input signals will cause no movement. For more information about input pulse timing, please see Latching Input Pulse Requirements on page 25.

Indicators and Fault Conditions

The on-board green and red LED indicators provide the user with information about the status of the actuator. The table at the top of the next column provides a list of indications and their associated conditions.

Red	Green	Condition
On	Off	Motor 1 is on (moving open)
Blink	Off	Motor 1 on with breakaway torque
Off	On	Motor 2 is on (moving closed)
Off	Blink	Motor 2 on with breakaway torque
Flash	-	Open limit switch is open
-	Flash	Close limit switch is open
Blink	Blink	Low battery voltage
On	On	Overvoltage

Note: Blink rate is 0.4 seconds on $/ 0.4$ seconds off. Flash is much faster at 10 on/off cycles per second.

Motor Output ON - When conditions are normal, the red LED indicator turns on when the MOTOR 1 (open) output is positive, and the green LED turns on when the MOTOR 2 (close) output is positive. When either LED is blinking during movement, it indicates that increased breakaway torque is currently available to unseat the valve.

Limit Switch - Many actuators are equipped with limit switches at their open and closed positions which stop the motor to prevent mechanical damage. The actuator's limit switches should be set for the range of motion required by the application.

When the open limit switch disconnects OPEN LIMIT SWITCH (J1-4) from LIMIT SWITCH COMMON (J1-3), the red LED will flash and the MOTOR 1 (open) output is disabled. Likewise, when the close limit switch disconnects CLOSE LIMIT SWITCH (J1-5) from LIMIT SWITCH COMMON (J1-3), the green LED will flash and the MOTOR 2 (close) output is disabled.

Low Battery Voltage and Overvoltage - If the supply voltage drops below 10 V , the motor outputs are disabled and both LEDs will blink indicating a low voltage condition. After the voltage returns, there is a retry delay before normal operation resumes. In local mode the retry delay is always three seconds. In remote mode, the delay time increases each time motor movement is interrupted by low voltage. This helps protect the battery and hardware. Once a movement is completed without a low voltage condition, the retry delay is reset to three seconds.

If the voltage exceeds 30 V for more than a second, the motor outputs are disabled and both LEDs will turn on to indicate an overvoltage condition. Normal operation resumes after the voltage drops below 30 V .

Current Trip Setting

The DPC-100 monitors the motor current and turns off the motor if the motor current exceeds 12 A . The motor remains off until the actuator is commanded to move in the opposite direction from the one that caused the current trip
condition.
For actuators using smaller motors with less than 12 A stall current, the DPC-100A, with its adjustable current trip, may be helpful. The trip setting is useful for limiting the torque applied to the actuator's load.

The DPC-100A has a yellow LED to indicate a trip condition and an isolated set of form-C contacts that can be used to indicate trip faults. The trip adjust pot and trip range jumper set the trip setting as shown below (see Latching Mode Outline on page 14 and the Block Diagram on page 15 for more information).

Curr	nt Trip Amps	Volts Across TP2
	0.5	0.208
	1	0.416
	1.5	0.624
	2	0.832
	3	1.248
	4	1.664
	5	2.080
	6	2.496
	8	3.328
	10	4.160
	12	4.992
$\begin{gathered} \text { TP2 } \\ \stackrel{+}{\square} \text { 回 } \end{gathered}$	DPC-100A only. Current trip amps = voltage measured across test point TP2 divided by 0.416 for all ranges (3A, 6A and 12A).	

The DPC-100A also has an on-board trip reset button and supports an external trip reset button. See Latching Mode Outline (page 14), Block Diagram (page 15), and Latching Mode Specifications (page 20) for more information.

The current trip setting should be adjusted to a comfortable level above the running current expected for the actuator under load. When the motor current exceeds the trip setting, the motor is turned off, the yellow LED is turned on, and the form- C contact switches.

The surge limiting of the DPC-100 combined with its current trip feature significantly reduces the maximum current needed by the motor, allowing for a less expensive
and smaller battery/power supply and wire gauge than would normally be required.

Without this current reduction, a costly high capacity battery/power supply would be essential to avoid collapse of the supply voltage. The battery/power supply can now be rated for either 20% of the locked rotor current, or the running current of the motor, whichever is greater. See the Wire Table (last page) for the recommended wire gauge.

If the trip setting is used to limit torque, note that the actuator and valve components (gears, couplings, seats, etc.) also place a load on the motor. These components will vary with temperature and age, and therefore the torque load will vary accordingly.

Torque Seating Valves (DPC-100A only)

The DPC-100A can provide independently adjustable breakaway torque in both directions. This is useful in projects where torque seating a valve, instead of position seating with limit switches, is desired. The valve seating torque is determined by the trip range jumper and trip adjust pot. Test point TP2 can be used to accurately set the torque to a consistent value in either the field or a production environment - see Current Trip Setting on page 18 for more info.

When torque seating a valve, the motor is driven until the current trip is activated. The corresponding limit switch must be positioned just beyond the current trip point to ensure that the current trip is controlling the valve seating torque, and that the limit switch isn't stopping the motor before the desired torque is applied to seating the valve.

To verify a valve is torque seated, make sure the yellow current trip LED is lit after the actuator stops moving. If the yellow LED is off, and either the red or green (open or close) LED is flashing, the limit switch tripped before the valve could be properly torque seated.

Once torque seated, some valves need extra torque to open reliably. The breakaway torque pots (P1 and P2) are used to set the maximum torque limit for unseating the valve.

The breakaway torque should be set to a level that reliably opens the valve while still protecting the actuator. The breakaway torque pots (P 1 and P 2) are adjustable in a range from 100% to 200% of the torque used to seat the valve (12 A maximum).

The length of time that breakaway torque is available is controlled by the breakaway torque time pot (P3). This time is adjustable in a range of 0 to 12 seconds and sets the breakaway torque time for both directions.

The breakaway torque time should be long enough to unseat the valve, but short enough that the breakaway torque limit times out before the actuator reaches the end of travel.

To make it easier to adjust the breakaway torque time, the corresponding open or close LED will blink when breakaway torque is available while moving in that direction. At the end of the breakaway torque time, the LED will stop blinking and stay lit continuously for the remainder of the move. A solid LED indicates that the actuator is moving with the standard torque as set by the current trip setting. See below and the Latching Mode Outline on page 14 for more information.

Reverse Acting Actuators

In reverse acting actuators, the motor turns clockwise (looking down from the top of the actuator) when opening the valve - see below.

When converting a direct acting actuator to a reverse acting actuator, three changes in wiring must be made:

1) Reverse the motor wires connected to MOTOR 1 (J1-1) and MOTOR 2 (J1-2).
2) Reverse the limit switch wires connected to OPEN LIMIT SWITCH (J1-4) and CLOSE LIMIT SWITCH (J1-5).
3) If you are using a feedback transmitter (XMA-10x series), reverse the feedback potentiometer's red and black wires at the transmitter and recalibrate the transmitter.

Latching Mode Specifications

Power Requirements

Operating voltage: 10 to 30 VDC.
Operating current (motor on): 74mA typical.
Standby current (motor off): 30 mA typical.
Operating current (motor off, trip LED on):
56 mA typical (DPC-100A only).
Fuse type: 10A TR5 time lag 374 (replaceable).

AC HI Control Signal Inputs

Maximum input voltage:
130VAC $50 / 60 \mathrm{~Hz}$ (20mA typical @ 60 Hz).
Minimum assured on state input voltage: 85VAC $50 / 60 \mathrm{~Hz}(13 \mathrm{~mA}$ typical @ 60 Hz).

Maximum assured off state input voltage: 60 VAC $50 / 60 \mathrm{~Hz}(8.8 \mathrm{~mA}$ typical @ 60 Hz$)$.

Maximum assured off state input current: $7.5 \mathrm{~mA} @ 60 \mathrm{~Hz} / 6 \mathrm{~mA} @ 50 \mathrm{~Hz}$.

DC/AC LO Control Signal Inputs

Maximum input voltage:
130VDC (4mA typical).
90VAC $50 / 60 \mathrm{~Hz}$ (3.3mA typical).
Minimum assured on state input voltage:
2.6VDC (0.4 mA maximum), TTL compatible.
1.9VAC (0.16 mA typical).

Maximum assured off state input voltage:
1.8 VDC .
1.3VAC.

Maximum assured off state input current:
DC: 0.25 mA
AC: 0.20 mA

DC Motor Outputs

Maximum running current: 10A.
Motor current trip threshold: DPC-100: 12A (fixed). DPC-100A: 0 to 12A (adjustable).

Motor current measurement resolution: 21 mA typical.

Trip Connector (DPC-100A only)

Trip relay output (form C contacts):
1A @ 24VDC / 0.5A @ 125VAC non-inductive.
On-board trip reset switch*:
Pushbutton located on unit.
External trip reset input*:
Normally open switch: 1mA @ 5VDC.
Open collector output: V ce $<0.5 \mathrm{~V} @ 1 \mathrm{~mA}$.
*One reset per button press or contact closure.

Control Adjustments

Open direction breakaway torque limit (P1):
100% to 200% of current trip setting.
Close direction breakaway torque limit (P2): 100% to 200% of current trip setting.

Breakaway torque time (P3): 0-12 seconds.

Environmental

Operating temperature range: $0^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$.
Storage temperature range: $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
Relative humidity: 0\% to 90% (noncondensing).
Recommended System Wiring

Wiring Diagrams
 Feedback and Input Signal Configurations

NOTE: Latching mode requires pulsed input signals.

DC Control Inputs Using Open Collector Outputs

*For 240VAC inputs use SIG-101 Signal Adapter.
NOTE: Latching mode requires pulsed input signals.
AC Control Inputs Using 120/240VAC

Wiring Diagrams

Output Configurations

Wiring Diagrams
 Latching Mode Special Applications

*For DC applications, the DC/AC LO inputs must be positive relative to the COMMON inputs.
AC control signals can also be used. Use the AC HI inputs for control signals greater than 90VAC.

Replacing a Negative Pulse Latching Solenoid Valve and the Pneumatic Actuator it Controls

*For DC applications, the DC/AC LO inputs must be positive relative to the COMMON inputs. AC control signals can also be used. Use the AC HI inputs for control signals greater than 90VAC.

Replacing a Positive Pulse Latching Solenoid Valve and the Pneumatic Actuator it Controls

Latching Input Pulse Requirements

Latching mode only (dip switch one is on)

Open Signal

Close Signal

Pulse duration must be at least 100 milliseconds to latch the output on

Open Signal

Close Signal

If open and close pulses overlap, the last pulse on determines the direction of movement

If pulses overlap, one pulse must extend at least 100 milliseconds past the other to latch

Open Signal
No latch, no movement (Movement does not start until both inputs are off).
Close Signal

A continuous signal in one or both direction will not latch (no movement)

Wire Table

The table below shows the maximum recommended distance (in feet and meters) between the power source and the DPC-100. The maximum distance is limited by the wire size and the locked rotor current of the motor.

The surge limiting feature of the DPC-100/DPC-100A along with an appropriate motor current trip setting can significantly reduce wire size and power requirements - see Trip Setting. The wire distance is calculated for a maximum voltage drop of 1 VDC with 20% of the locked rotor current, and assumes that the full load current of the running motor is less than 20% of the locked rotor current.

All signal wires on the DPC-100 should be connected with wire sizes ranging from 22 to 18 AWG.

Locked Rotor Current (amps)	Units	Wire Gauge						
		18 AWG	$\begin{gathered} 16 \\ \text { AWG } \end{gathered}$	$\begin{gathered} 14 \\ \text { AWG } \end{gathered}$	$\begin{gathered} 12 \\ \text { AWG } \end{gathered}$	$\begin{gathered} 10^{1} \\ \text { AWG } \end{gathered}$	$\begin{gathered} 8^{1} \\ \text { AWG } \end{gathered}$	$\begin{gathered} 6^{1} \\ \text { AWG } \end{gathered}$
1	Feet Meters	$\begin{aligned} & 333 \\ & 101 \end{aligned}$	$\begin{aligned} & 529 \\ & 161 \end{aligned}$	$\begin{aligned} & 842 \\ & 257 \end{aligned}$	$\begin{gathered} 1337 \\ 408 \end{gathered}$	$\begin{gathered} 2119 \\ 646 \end{gathered}$	$\begin{aligned} & 3383 \\ & 1031 \end{aligned}$	$\begin{aligned} & 5376 \\ & 1639 \end{aligned}$
2	Feet Meters	$\begin{gathered} 167 \\ 51 \end{gathered}$	$\begin{gathered} 264 \\ 80 \end{gathered}$	$\begin{aligned} & 421 \\ & 128 \end{aligned}$	$\begin{aligned} & 668 \\ & 204 \end{aligned}$	$\begin{gathered} 1059 \\ 323 \end{gathered}$	$\begin{gathered} 1692 \\ 516 \end{gathered}$	$\begin{gathered} 2688 \\ 819 \end{gathered}$
5	Feet Meters	$\begin{gathered} 67 \\ 20.4 \end{gathered}$	$\begin{gathered} 106 \\ 32 \end{gathered}$	$\begin{gathered} 168 \\ 51 \end{gathered}$	$\begin{gathered} 267 \\ 81 \end{gathered}$	$\begin{aligned} & 424 \\ & 129 \end{aligned}$	$\begin{aligned} & 677 \\ & 206 \end{aligned}$	$\begin{gathered} 1075 \\ 328 \end{gathered}$
10	Feet Meters	$\begin{aligned} & 33 \\ & 10 \end{aligned}$	$\begin{aligned} & 53 \\ & 16 \end{aligned}$	$\begin{aligned} & 84 \\ & 26 \end{aligned}$	$\begin{aligned} & 138 \\ & 42 \end{aligned}$	$\begin{gathered} 212 \\ 65 \end{gathered}$	$\begin{aligned} & 338 \\ & 103 \end{aligned}$	$\begin{aligned} & 538 \\ & 164 \end{aligned}$
15	Feet Meters	$\begin{aligned} & 22 \\ & 6.7 \end{aligned}$	$\begin{gathered} 35 \\ 10.7 \end{gathered}$	$\begin{aligned} & 56 \\ & 17 \end{aligned}$	$\begin{aligned} & 89 \\ & 27 \end{aligned}$	$\begin{gathered} 141 \\ 43 \end{gathered}$	$\begin{gathered} 226 \\ 69 \end{gathered}$	$\begin{aligned} & 358 \\ & 109 \end{aligned}$
20	Feet Meters	$\begin{aligned} & 17 \\ & 5.2 \end{aligned}$	$\begin{aligned} & 26 \\ & 7.9 \end{aligned}$	$\begin{gathered} 42 \\ 12.8 \end{gathered}$	$\begin{gathered} 67 \\ 20.4 \end{gathered}$	$\begin{gathered} 106 \\ 32 \end{gathered}$	$\begin{gathered} 169 \\ 52 \end{gathered}$	$\begin{gathered} 269 \\ 82 \end{gathered}$
30	Feet Meters	$\begin{aligned} & 11 \\ & 3.4 \end{aligned}$	$\begin{aligned} & 18 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 28 \\ & 8.5 \end{aligned}$	$\begin{gathered} 45 \\ 13.7 \end{gathered}$	$\begin{gathered} 71 \\ 21.6 \end{gathered}$	$\begin{gathered} 113 \\ 34 \end{gathered}$	$\begin{gathered} 179 \\ 55 \end{gathered}$
40	Feet Meters	$\begin{gathered} 8 \\ 2.4 \end{gathered}$	$\begin{aligned} & 13 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 21 \\ & 6.4 \end{aligned}$	$\begin{aligned} & 33 \\ & 10 \end{aligned}$	$\begin{aligned} & 53 \\ & 16 \end{aligned}$	$\begin{aligned} & 85 \\ & 26 \end{aligned}$	$\begin{gathered} 134 \\ 41 \end{gathered}$
50	Feet Meters	$\begin{gathered} 7 \\ 2.1 \end{gathered}$	$\begin{aligned} & 11 \\ & 3.4 \end{aligned}$	$\begin{aligned} & 17 \\ & 5.2 \end{aligned}$	$\begin{aligned} & 27 \\ & 8.2 \end{aligned}$	$\begin{gathered} 42 \\ 12.8 \end{gathered}$	$\begin{gathered} 68 \\ 20.7 \end{gathered}$	$\begin{gathered} 108 \\ 33 \end{gathered}$
60	Feet Meters	$\begin{gathered} 6 \\ 1.8 \end{gathered}$	$\begin{gathered} 9 \\ 2.7 \end{gathered}$	$\begin{aligned} & 14 \\ & 4.3 \end{aligned}$	$\begin{aligned} & 22 \\ & 6.7 \end{aligned}$	$\begin{gathered} 35 \\ 10.7 \end{gathered}$	$\begin{aligned} & 56 \\ & 17 \end{aligned}$	$\begin{aligned} & 90 \\ & 27 \end{aligned}$

Notes:

1) The DPC-100 terminal strip will not accept wire sizes larger than 12 AWG. Use a short run of 12 AWG from the DPC-100 to an auxiliary terminal block when larger wire is needed.
2) If the motor is located some distance from the DPC-100, add this distance to the overall wire length. Be sure to use an appropriate wire size to the motor.
3) When multiple actuators are powered by a common set of wires, use the sum of all the motor currents when determining wire size.
