

 TECHNICAL
 MANUAL

 The PACS Standard

PEAKTRONICS

 2001,  2008 Peaktronics, Inc.
 www.peaktronics.com
PEAKTRONICS, Inc. 1363 Anderson Clawson, MI 48017 Phone (248) 542-5640 FAX (248) 542-5643 800-19C

PEAKTRONICS

TECHNICAL MANUAL The PACS Standard

CONTENTS

 page

 SECTION I – The PACS System 1
 System Overview
 PACS Master
 PACS Slave
 PACS Cable
 PACS Sequence
 Off Line Timer
 PACS Interchange

 SECTION II - The PACS Format 4
 PACS Sequence
 Data Mode
 Address Mode
 READ Command
 CHAN ID Command
 Tier Command
 LEVEL Command
 The No Operation Standard

 SECTION III - The ASCII Translator 10
 PACS Command
 Data Mode
 Address
 Separator
 Data
 Terminator
 CHAN ID Command
 TIER Command
 Syntax Errors

 SECTION IV - PACS Command Set 13

 APPENDIX A - PACS Reference Guide 19
 APPENDIX B - ASCII Conversion Table 20

 1

SECTION I
The PACS System

SYSTEM OVERVIEW

 Peaktronics Asynchronous Communications
System, known as PACS®, is a formerly patented process
for a software dependent communications scheme intended
for high speed easily managed communication links
between electronic equipment. Standardization of the
hardware and software elements of the system provide for
universal applications while allowing for versatility and
easy expansion of the system.
 The hardware essentially involves a standard low
cost PACS® Cable (see Figure 1) that is used to connect
equipment that includes standard PACS® interface circuitry.
Establishing a communications link with PACS® requires
no settings or synchronizing of any kind. The standard
PACS® hardware will automatically interface for the most
optimum performance allowed by the two devices connect-
ed together and the length and condition of the cable
connecting the two devices.
 The software is a command set of universal
conversation codes that are easily adapted in any computer
or peripheral device. PACS® Level 1 is the most basic set
of codes that is most useful in industrial controllers, data
terminals, keyboards. etc., where code size is usually a
concern for the local microprocessor. PACS® Level 1 is
upward compatible with other levels of PACS®, thereby
eliminating concerns for obsolescence or incompatibility.

 The PACS® system can be broken down into two
basic elements: the PACS® Master and the PACS® Slave.
A better understanding of this will be useful in mastering
the PACS® software.

PACS® MASTER

 A PACS® Master is any device that controls the
communication process within the system. All hardware
and software sequences are initiated by the PACS® Master.
A PACS® Master is connected to a PACS® Slave via a
PACS® Cable. The PACS® Slave is expected to respond in
a certain fashion to the sequences initiated by the PACS®
Master. A single piece of equipment may have more than
one PACS® Master, or port, to allow connections to more
than one PACS® Slave at a time.

PACS® SLAVE

 A PACS® Slave is any device that responds to the
sequences initiated by a PACS® Master. A PACS® Slave is
connected to a PACS® Master via a PACS® Cable. The
PACS® Slave will respond in a certain fashion to all hard-
ware and software sequences initiated by a PACS® Master.
A single piece of equipment may have more than one
PACS® Slave, or port, to allow connections to more than
one PACS® Master at a time.

2

PACS® CABLE

 The PACS® Cable is a standardized connection
system for connecting a PACS® Master to a PACS® Slave.
The standard defines the connector type and the cable type
with color code (see Figure 1).
 The connectors are easily crimped to the cable for a
quick and reliable connection. Note that the connectors are
inverted on opposite sides of the cable, so that the pinout
has the same color code on both ends of the cable. Since
both ends of the cable are the same, either end may be
connected to the PACS® Master or PACS® Slave.
 Conformance to the color code allows for easy
identification of wires when the other end of the cable is not
accessible; however, the colors could be reversed at both
ends and result in the same connection. Should either end
of the cable be wired in reverse, the PACS® Standard
provides that the PACS® Master and PACS® Slave shall not
be damaged by incorrect wiring of the cable.
 The PACS® Cable standard is intended to define
the interconnection for "external" communication ports.
However, for localized PACS® connections (such as board
to board) that are not intended for general hookup to other
PACS® devices, virtually any four-wire connection scheme
could be used. The PACS® Standard provides the means
for both sides to adjust to other connection types and
lengths. The PACS® Cable shown in Figure 1 is not
recommended for lengths of more than 5000 feet.

Connector Pinout (both ends)

4 Yellow
3 Green
2 Red
1 Black

M
S
C

COM

(cut to length)

Use TOL-100 Crimp Tool to
crimp wires to connectors.

CON-101 PACS Connector

WIR-100 PACS Wire

Figure 1 - PACS® Cable

PACS® SEQUENCE

 The communication process is achieved through a
series of signals called a PACS® Sequence. The PACS®
Master will always start the communication sequence and
the sequence is terminated according to a predefined
format, known as the PACS® Standard. During the
sequence, data is verified, acknowledged, and decoded.
 The most basic PACS® system would consist of a
master connected to a slave where each is responsible for
certain signals at certain times in order to complete a
PACS® sequence. The master controls the signal sequence
while the slave responds to the signals generated by the
master. If two slaves are connected together, both will be
waiting for the other to start a sequence, and
communications will not occur. If two masters are con-
nected together, neither will respond to the other, and again
communications will not occur.
 In the form of software, a communication sequence
is called a "command string". All communication
sequences, or command strings, will be a specific instruc-
tion or command from the PACS® Master to the PACS®
Slave. The PACS® Slave will never return data to a PACS®
Master unless the master commands the slave to do so, and
then, under the control of the master.
 Each command in the PACS® command set defines
a communication sequence, also called a command string.
For commands that instruct the PACS® Slave to return data,
such as the R (READ) command, the returned data is
considered to be part of the same PACS® sequence.
Therefore, the returning data must be completely received
by the master before another sequence can be initiated.
 During the PACS® sequence, both the master and
slave are required to exchange signals in a predefined
fashion such that both devices can detect errors or troubles
in the hardware as well as the software. This process is
proprietary information at this time. For information on
licensing or information on applications, contact
Peaktronics, Inc.
 Whenever an error condition is detected by the
slave, the slave will notify the master and then ignores the
command string that resulted in an error. Whenever the
master detects an error, the master will instruct the slave to
ignore the command string. In either case, the master will
know of any error condition, allowing the master the option
of attempting to retransmit the sequence.

OFF LINE TIMER

 In practice, there are various conditions that could
interrupt communications, such as a broken cable or a loss
of power to either the master or slave. Due to the asynch-
ronous feature of PACS®, a device would "hang-up"
waiting for a response from the other side should the

 3

sequence be interrupted. For this reason, a PACS® device
will maintain an off line timer.
 The off line timer in a PACS® device will allow a
set amount of time for the other device to respond. Should
the other device fail to respond within the time period
allowed, the sequence will be terminated and ignored; the
other device will then be considered to be off line. The
amount of time allowed is to be specified by the designer of
the PACS® device. The designer is given the flexibility of
the time period so as not to restrict any particular
application.
 In general, PACS® Master devices will tend to have
a short off line timer in comparison to a PACS® Slave.
This is usually the case since a master will have other tasks
to perform depending on the status of the slaves, or
peripherals, that it is connected to.
 In some cases, a PACS® Slave may have an
indefinite off line timer, allowing the master as much time
as it may need. Should the master lose power and then
power up again, the master would start a new PACS®
sequence while the slave is expecting a continuation of the
previous sequence; this is called a "sync error" and is
handled by the error detection process. As a result, the
slave will ignore the sequence that was interrupted by the
power loss at the master side, and the master will retransmit
the new sequence that was attempted on power up.
 Some devices may be intended for general purpose
use. In this case, selecting a specific off line timer period
may not be suitable for all applications. This type of
device, therefore, could have an off line timer that is
programmed by the user either through software or hard-
ware.

PACS® INTERCHANGE

 The most basic PACS® system would consist of a
master connected to a slave; however this would have very
limited applications. An easy method for expanding the
system would be to provide the master unit with several
PACS® master ports for connecting to several peripherals.
Also, a peripheral could have several PACS® Slave ports,
allowing access by more than one master unit. A more
efficient and versatile method of expansion is accomplished
with the use of a PACS® Interchange. A PACS® Inter-
change is a device that allows one or more masters to
connect to one or more slaves (see Figure 2).
 An interchange is a unit that appears as a single
peripheral, or slave, to the master units connected to it.
Each slave unit connected to the interchange is represented
as a bank of memory that may be accessed by any of the
master units. An interchange will automatically handle the
communication process to each slave unit. The master unit
need only access a "memory bank" (actually a slave unit).
This process is specified by the CHAN ID command (see
Section II for details).
 Since an interchange unit appears as a slave unit to
a PACS® Master, any one of the slave units shown in
Figure 2 could be another PACS® Interchange unit.
Subsequently, that interchange could also connect to an
additional interchange, and so on. Accessing each "tier" of
interchanges is done with the TIER command (see Section
II). While certain limitations arise in actual practice, a
combination of TIER and CHAN ID commands could
allow a master unit to access literally trillions of slave
devices connected to a series of "tiered" interchanges.

PACS
Slave

PACS
Slave

PACS
Slave

PACS
Master

PACS
Master

PACS
Master

m
as

te
r

po
rt

slave
port

m
as

te
r

po
rt

m
as

te
r

po
rt

slave
port

slave
port

PACS
Interchange

Figure 2 - PACS® Interchange

4

SECTION II
The PACS Format

 The PACS® software system is designed to be
easily adapted by microprocessors of all types. The basic
concept of PACS® is to give the master access to the
internal memory of a slave; thereby allowing the master to
either change or read data in a slave that is pertinent to its
operation.
 The PACS® format is very straight forward and
consistent so that a programmer does not concern himself
with how to access a peripheral, but rather, where to access
the peripheral's memory. Information detailing the key
locations to access in a peripheral should be found within
the manual for the peripheral. This discussion will concern
itself with the details of how to use the PACS® software.

PACS® SEQUENCE

 A complete communication sequence, or PACS®
sequence, is called a command string and consists of three
pieces of information:

• The first part of a command string represents the
COMMAND that tells the slave specifically what
operation the master wishes to perform.

• The second portion of the string is the ADDRESS

(or memory location) that the master wishes to
perform the operation on.

• The third portion of the string represents the DATA
that is to operate with the selected address.

 A fourth element of a PACS® sequence is primarily
a hardware condition, where the slave is required to respond
to the transmitted information to confirm that the
Command, Address, and Data correlate with each other. To
complete a sequence, the master then confirms concurrence
to the slave's response. If the master should not concur, the
slave will ignore the entire sequence.
 Information transmitted across a PACS® Cable is in
a binary format. This binary format is inclusive and
requires no control characters for proper processing. A
command string consists of at least an eight bit command
which will define the operation that is to be performed
(such as ADD, READ, etc.). Depending on the specific
command, a 16 bit address will follow the 8 bit command,
and depending on the type of operation, a data word of
either 8, 16, or 32 bits will follow the address.

DATA MODE

 Each eight bit block is called a byte, so a data word
can therefore be either a SINGLE byte, a DOUBLE byte, or
a QUAD byte. The size of the data word defines the
DATA MODE. In the following example, each byte of a
command string is represented by a hexadecimal value,

 5

where 64 is the command byte, 9A21 is the two-byte (16
bit) address, and 2C is a single byte data word:

 64 9A21 2C

The above command is said to have a single byte data
mode.
 The previous command string specifically tells the
slave to ADD the contents of memory location 9A21 to the
value of 2C, and then replace the contents of 9A21 with the
result of the addition. Changing the command byte to a
value of 84 changes the data mode to a double byte word:

 84 9A21 2C10

In the above example, the 16 bit data word, 2C10, is added
to the 16 bit value stored at location 9A21 and 9A22, where
9A21 will contain the most significant byte. The 16 bit
result will replace the contents of 9A21 and 9A22.
 In a similar fashion, changing the command byte to
C4, the data mode is changed to a quad byte:

 C4 9A21 410A2C10

In this case, the 32 bit data word (41 being the most
significant byte) is added to the contents of locations 9A21,
9A22, 9A23, and 9A24 where the most significant byte is
9A21 and the least significant byte is 9A24. As before, the
sum replaces the contents of 9A21 through 9A24.
 Some commands do not require data to follow the
address bytes, or otherwise known as an inherent command.
An example of this is the INCR, or increment, command.
This command instructs the slave to automatically add one
to the value in the selected address.
 Although the data is not supplied by the master, the
master must still define the data mode:

 54 9A21 SINGLE
 55 9A21 DOUBLE
 56 9A21 QUAD

In the above examples, the command byte 54 instructs the
slave to increment the contents of 9A21, while 55 com-
mands the slave to increment the 16 bit value in 9A21
(most significant) and 9A22. Command byte 56 instructs
the slave to increment the 32 bit value at 9A21 through
9A24.

ADDRESS MODE

 In the previous examples, the command string
includes an address (that is, 9A21). This address tells the
slave specifically which location the master wishes to
operate on. This is called DIRECT ADDRESSING MODE

since the master directly tells the slave which address is to
be used.
 The PACS® Standard provides that a slave will
maintain an index pointer which points to the memory
location that is to be operated on by a PACS® command.
Whenever the master uses Direct Addressing, the slave will
set its index pointer to the value stipulated by the address
bytes in the command string.
 Consider the following command string:

 84 9A21 2C10

When the slave has received the command string, the slave
will set its index pointer to 9A21. This will guide the slave
in performing the addition process dictated by the com-
mand byte, 84. At the conclusion of the addition process,
the slave will have changed the contents of 9A21 and 9A22
(a double byte word) to the result of the addition, and the
index pointer will be set to 9A23. This allows the index
pointer in the slave to point to the next available location.
 A master unit can take advantage of the knowledge
that the slave's index pointer will be set to a predefined
value (in this case, 9A23). By using the INDEXED
ADDRESSING MODE, the master can avoid transmitting
the 16 bit address. Consider the following example:

 84 9A21 2C10
 15

As discussed before, the 84 command will add the value of
2C10 to the contents of 9A21 and 9A22, and upon the
conclusion of the addition, the index pointer is set to 9A23.
The following command string is now only one byte, 15.
This command will instruct the slave to increment the
double byte (double byte data mode) pointed to by the
index pointer. In other words, the 16 bit value located at
9A23 and 9A24 is incremented by one. At the completion
of the increment process, the slave will set the index pointer
to the next successive location (that is 9A25).
 The command byte 15 could have been replaced
with the following command string:

 55 9A23

However, since the master already knew that the index
pointer in the slave was pointing to 9A23, the address bytes
were not required and therefore Indexed Addressing could
be used.
 While indexed addressing provides efficiency for
the master, certain precautions need to be taken when using
Indexed Addressing. In the event that the slave unit should
lose power momentarily, the slave will reset its index
pointer to location zero when power is returned. The
master may want to monitor the slave's power conditions if
certain indexed commands are crucial. Information on how

6

to monitor power conditions should be available in the
manual for the slave unit.
 If an error occurs during a PACS® sequence, both
the slave and master units will detect such a condition. The
slave is required to perform no operation in response to an
error which means that it will not change its index pointer.
However, it is common for an error to occur during the first
PACS® sequence after a slave unit powers up in which case
the index pointer is reset to zero. Again, the master may
need to monitor the slave's power conditions.
 Another concern while using Indexed Addressing
is to insure that no other master unit (via an interchange, see
Section I) has accessed the slave unit, thereby changing the
slave's index pointer to an unknown value. To insure
expected results from an indexed command, the master unit
may have to program special features in the interchange, or
have a thorough understanding of the system so as to avoid
unexpected results.

READ COMMAND

 Some commands have special considerations. One
such command is the READ command. A command string
for a READ command is unique in the sense that the data
word, which can either be single, double, or quad, is
supplied by the slave unit. Consider the following:

 master transmits:
 51 9A21
 slave transmits:
 1F05
 master transmits:
 12
 slave transmits:
 0023A58C

 In the above example, the command byte 51 will
instruct the slave to return the data located in 9A21 and
9A22 as a double byte word (in this case, 1F05). The actual
process of receiving data from a slave is transparent to the
user, but it should be understood that the READ command
is considered to be inherent (meaning that the master does
not supply the data), and that the data which is transferred
from the slave to the master is part of the PACS® sequence.
 Since the master dictates the data mode, the master
can command data transfers that are either 8, 16, or 32 bits
long. Additionally, the master still dictates the location(s)
to be transferred, and therefore the slave must maintain its
index pointer accordingly. This allows for the indexed
addressing mode.
 In the example above, the master transmits the
single byte command, 12, after receiving the data from the
slave. This command instructs the slave to return a quad
byte using the indexed addressing mode. The master does

not transmit the address information; instead the slave will
transmit the data stored at the locations pointed to by its
index pointer. In this way, the master need only transmit
one byte to command the slave to return 4.

CHAN ID COMMAND

 Another command that requires special consider-
ation is the CHAN ID command. This command is used to
command the slave unit to switch to another memory bank
for all subsequent commands. This is useful when a slave
has more locations than can be addressed with the basic 16
bit address that follows a command byte.
 Memory banks are numbered from 0 to 1023 which
allows a slave unit to incorporate very large amounts of
memory (up to 67,107,840 bytes) that may be directly
accessible by a master. To better understand how this is
implemented, consider the following series of commands:

 3C 04
 62 0500 0A
 3C 08
 62 0500 01

The 3C command instructs the slave to switch memory
banks, the following data byte, 04 tells the slave which
memory bank to switch to. The next command, 62, tells the
slave to change the contents of location 0500 to a value of
0A. Since the selected memory bank is 04, only location
0500 within memory bank 04 is affected.
 To change locations in another memory bank, the
CHAN ID command will need to be given again. In this
case, 3C 08 instructs the slave to make memory bank 08
accessible to the master. The following CHANGE com-
mand, 62 0500 01, tells the slave to change the contents of
location 0500 to a value of 01, and since the selected
memory bank is 08, only location 0500 within bank 08 is
affected. The previous value of 0A is still in location 0500
within bank 04.
 Not all slave units are going to be able to make use
of the CHAN ID command, and in fact, most slave units
would be hard pressed to offer more than the normal 65,535
bytes accessible with the 16 bit address. For this reason, a
key PACS® Standard is implemented here to insure
compatibility.
 All PACS® Slave devices will receive the CHAN
ID command as a valid hardware sequence, however, how
the slave "executes" the command can be done in one of
two ways:

1) The slave can ignore the command, perform no
operation at all, and leave the index pointer at its
previous value. This option allows for reduced
software within the slave and effectively "shadows"

 7

its only memory bank at any bank selected by the
master.

2) The slave unit can respond to the command by

allowing access to another section, or bank, of
memory. The slave can shadow any bank at
various CHAN ID selections, or it may respond to
unused banks in a predefined way.

 Ultimately, the instruction manual for the slave unit
should define how the slave will respond to the CHAN ID
command. In any case, no matter how the slave executes
the command, the slave will NEVER CHANGE THE
INDEX POINTER in response to the CHAN ID command.
The final responsibility of performance of the CHAN ID
command falls on the master's control program. The
master's control unit must know what to expect from the
slave when using the CHAN ID command.
 The term "memory bank" as described above
would tend to infer that each bank consists of some type of
electronic storage device that is located within the slave.
As illustrated in Figure 3, a master can access three
different RAM devices, each consisting of some type of
storage hardware located inside of the slave. However, any
or all of these "memory banks" could be an independent
unit outside of the slave. When one or more of these
independent units happen to be another PACS® Slave, a
PACS® Interchange is created (see Figure 4).

PACS
Slave

CHAN 0
RAM

CHAN 1
RAM

CHAN 2
RAM

PACS
Cable PACS

Master

Figure 3 – CHAN ID Accessible Memory Banks

 In Figure 4, the master still accesses each bank of
memory as it did in Figure 3. The only difference is that
the interchange in Figure 4 uses a PACS® Slave to provide
the storage device for memory banks 1 and 2. Notice that
the interchange uses a local RAM device for CHAN 0.
This allows the master to either program features in the
interchange, or to monitor key information about the
interchange's operation. This process could allow a master
to access up to 1024 slave units; this includes the PACS®
Interchange which is ALWAYS assigned to CHAN 0.

CHAN 0
RAM

CHAN 1
Slave

CHAN 2
Slave

PACS
Master

PACS
Cable

PACS
Cable

PACS
Cable

PACS
Interchange

Figure 4 - PACS® Interchange

TIER COMMAND

 While the CHAN ID command provides access to
a large number of PACS® Slave units, a far greater
expansion of the PACS® System is achieved with the TIER
command. The PACS® Master in Figure 4 obtains access
to the one of the slave units because the PACS® Interchange
interprets the CHAN ID command in such a way that all
subsequent commands from the master unit are literally
passed to the associated slave unit until a new CHAN ID is
provided by the master. If one of the slave units happened
to be a PACS® Interchange, the master unit would not be
able to send a CHAN ID command to the interchange since
the first interchange unit (connected directly to the master
unit) will interpret the CHAN ID command for itself.
 The TIER command essentially instructs the first
interchange unit to pass a CHAN ID command to the
associated slave unit. Part of the TIER command provides
the CHAN ID value that is to be passed on; this eliminates
the need to generate a separate CHAN ID command after
the TIER command.
 Figure 5 illustrates how quickly a large number of
slave units can be accessible to a single master unit. The
PACS® Master can access the Tier 0 interchange by
sending a TIER command with a tier value of 0 along with
the desired CHAN ID value. However the same could be
accomplished by merely sending the desired CHAN ID
command. Once a desired Tier 1 interchange has been
selected, the master would then send a TIER command with
a tier value of 1 along with a CHAN ID value to select the
desired Tier 2 interchange. This would then be followed by
a TIER command with a tier value of 2 and a CHAN ID
value to select the desired slave unit connected to one of the
Tier 2 interchanges. This process can be extended to a
group of interchanges connected at Tier 255.
 Examining Figure 5, the Tier 0 interchange has the
possibility of connecting to 1023 other interchanges. Each
of the Tier 1 interchanges can provide access to 1023
interchanges; this results in a total of 1,046,529 possible

8

Tier 2 interchanges. Each of those can provide access to
1023 salve units, resulting in a possible 1,070,599,167 total
slave units. Extending the tier system to its fullest extent of
255 tiers would result in 1023255 number of possible slave
units.
 While it may not be practical to create a fully tiered
system, in practice, interchanges and slave units can be
tiered in any combination at any tier. Each interchange

shown in Figure 5 may assign its CHAN ID values to any
combination of internal memory devices or PACS® ports
connecting to the next tier, whether they are slave units or
interchanges. As always the master unit has finally
responsibility for knowing how each of the devices in the
system are intended to operate, and each of the slave units
and interchanges must specify their functions.

PACS
Interchange

PACS
Interchange

1

PACS Slave
1,070,599,167

Tier 1

Tier 0

Tier 2
PACS

Interchange
1

PACS
Interchange

1023

PACS
Interchange

1023

PACS
Interchange
1,045,507

PACS
Interchange
1,046,529

PACS Slave
1

PACS Master

Figure 5 – Tiered Interchanges

LEVEL COMMAND

 The LEVEL command instructs a slave unit to
return a single byte that represents the level of PACS
incorporated within the slave device. This is useful to a
master in order to determine what commands the slave
device will execute. Unlike the READ command, the
LEVEL command is a direct response from the slave
device, and therefore has no address associated with it, and
the slave's index pointer is not changed as a result.
 Specifically, a Level 1 slave device will perform no
operation in response to a CHAN ID or TIER command.
Consequently, all following commands from the master
will be performed on the only "memory bank" contained in
the Level 1 Slave.
 A Level 2 slave device will execute an operation in
response to a CHAN ID or TIER command. The Level 2
slave must clearly specify what operation is performed for

all the possible combinations of the CHAN ID and TIER
commands. For example, any one of the PACS
Interchanges shown in Figure 5 could have only 8 channels,
instead of the maximum 1023. In this case, the device must
specify what operation occurs when it receives a CHAN ID
command for channels 9 to 1023.
 No PACS device is considered to be level 0. If
the master receives a value of 0, it will treat this as an error
and assume the device is only a Level 1 slave. Levels 3 to
254 are reserved for future corresponding levels of PACS .
 Level 255 (FF16) is reserved for a special response
from a PACS Interchange. In a tiered system, such as the
one in Figure 5, unnecessary delays could occur if a device
goes off line or encounters an error. To avoid such delays,
a common practice for interchanges is to return all 1's in
response to READ commands for channels that encounter
an error, go off line, or simply do not exist. However, a
data value with all 1's might be a valid value for the

 9

location being read. The LEVEL command allows the
master to determine whether the data received from a
previous READ command is suspect, since no PACS
device is considered to be level FF. The LEVEL command
can then be used to quickly scan devices in the system to
determine when a device is back on line.
 Slave devices commonly implement a timer that
limits the amount of time the master has between command
strings. If the specified time period is exceeded, the slave
device will then switch to a specified default operation.
The LEVEL command is useful for keeping such timers
from timing out, since the LEVEL command does not
affect any specific address or the index pointer.

THE NO OPERATION STANDARD

 A key to maintaining organization in a communi-
cations system is to be able to distinguish good information
from bad information. The PACS® hardware already
includes a number of methods of discriminating data.
These methods provide both master and slave with the
capability to know when errors have occurred.
 The No Operation Standard derives itself from this
process. Simply put, the slave will perform no operation
when an error condition is detected and will reestablish
communications under the direction of the master; the
master, having knowledge of such errors, can take whatever
action it deems necessary to compensate for the error, such
as retransmitting the command.
 In some cases, a slave may receive a command
sequence that does not result in any hardware error.
However, it may not "understand" the command. For
example, a PACS® Level 1 slave may receive a higher level
command from the master. To insure that the slave does
not perform an undesired operation, the slave will abide by
the NO Operation standard. Since the master will not
detect an error in this situation, the mater may need to "test"
the results of the command prior to assuming that the slave

will understand the operation. Alternatively, the master
would know that the slave is at a lower level, or may use
the LEVEL command to determine the slave’s level, and
therefore will avoid using the higher level commands. To
insure compatibility between various PACS® levels, higher
level PACS® command sets are required to include all
lower level commands.
 A final condition that results in no operation is
more deliberate. Several command bytes have been specifi-
cally designated as a NOP (No Operation) command.
Command byte values of 00, 03, 05, 07, 09, 0B, 0D, and FF
are the NOP commands and are typically used for initial
communications during a power up sequence in order to
"synchronize" the master and slave. The FF command will
result in an eight byte sequence, where the additional bytes
have no special requirements and are ignored by the slave.
The other NOP commands are single byte commands with
no additional bytes in the command sequence.
 The 00 NOP is inherently the fastest PACS®
command and can be useful for keeping slave timers from
timing out. Like the LEVEL command, the NOP command
does not affect any specific address or the index pointer.
Generally, the NOP command is better suited for this
purpose when communicating with a Level 1 Slave. Since
a Level 2 Slave could be an interchange, the LEVEL
command is better suited, since it can also monitor if a
given channel is on line.
 If the slave performs no operation for any reason, it
will not change its index pointer. It is important for the
master to know that no operation has occurred whenever
the indexed addressing mode is used. The master may
choose to transmit a direct address for one command in
order to establish the index pointer in the slave. Various
commands can be used to change the index pointer without
changing data in any location, such as the READ command
or by adding zero to a location with the ADD command.
The master may also want to test the results of a series of
indexed commands. For example, the master could read the
last location expected to be changed by a series of indexed
commands to confirm that it contains the expected data.

10

SECTION III
The ASCII Translator

 The PACS® format described in the previous
section discusses PACS® in its true form as binary codes.
While this information is useful to someone who is design-
ing or debugging hardware, it does tend to be cumbersome
for someone who needs to write programs in a PACS®
system. To aid the programmer, the ASCII Translator
format is provided. The same way an assembler aids a
programmer in writing programs for microprocessor
machine codes, the ASCII Translator provides a standard
format that allows programming to be done with abbrevi-
ated alphanumeric codes.
 The ASCII Translator can take on different forms.
For example, the translator may be part of a development
system where programs are encoded into PACS® codes and
then placed on disk or EPROM for its final application. In
other cases, the ASCII Translator may be part of an
interface module that accepts another form of
communications, such as RS-232, and converts incoming
ASCII characters into PACS® codes for an outgoing
PACS® Master port. This method however is less efficient
due to the number of ASCII characters, or bytes, that are
required to generate more efficient PACS® code.

PACS® COMMAND

 Information processed by the ASCII Translator
must follow a certain format and uses certain control
characters to identify the meaning of characters. The

general structure of a command sequence is illustrated in
Figure 6. The PACS® command is represented by a one or
two character abbreviation. A complete list of the ASCII
commands can be found in APPENDIX A. The translator
will convert the one or two character code into a single
command byte.

A N S 2 0 8 , # F C

PACS Command

Data Mode

Address

Separator

Data

Terminator

Figure 6 – ASCII Translator Format

DATA MODE

 The character that follows the command characters
defines the data mode for the translator. The translator will
use this character to further define the command byte. So,

 11

the translator will actually convert two or three ASCII
characters into a single PACS® command byte. To define
the data mode, one of three characters is used:

 S - SINGLE byte
 D - DOUBLE byte
 Q - QUAD byte

ADDRESS

 Once the PACS® Command and data mode are
defined, further definition of the PACS® Command is
required; the address mode must be defined. Whether a
command will be direct addressing or indexed addressing
depends on whether or not the address information is
supplied. If direct addressing is desired, then the address is
supplied after the data mode character. If indexed address-
ing is desired, then the address information is not supplied.
 The address information can be provided in one of
two formats, decimal or hexadecimal. Decimal address
information can be any value from 0 to 65535. This means
that the address could be one to five ASCII characters in
length. To distinguish between decimal and hexadecimal
addresses, the ASCII character "#" will follow the data
mode character to denote that the following characters will
represent a hexadecimal address. The address can be any
value from 0 to FFFF. Hexadecimal addresses, therefore,
can be two to five characters long. Leading zeros can be
supplied; however, the translator will ignore them. In any
case the translator is not required to accept more than five
characters for the address field.

SEPARATOR

 Since address values can vary in length, a comma
is used to mark the end of the address characters. The
comma is called a Separator. The Separator will separate
characters that define an address from characters that define
the data (see Figure 6). Basically all characters that precede
the separator are used to generate the PACS® Command
byte and the two address bytes (if needed) for the command
sequence. When the translator sees the separator, the
previous characters are evaluated and the PACS®
Command and address bytes are generated.

DATA

 Following the separator, data characters (if
required) should be supplied. As with the address
information, the data can be supplied in two different
formats, decimal and hexadecimal. To designate a
hexadecimal data value, the ASCII character "#" will
precede the actual data (as illustrated in Figure 6).

 When supplying the data characters, it should be
noted that the data mode has already been established;
therefore, the provided data must correlate with the
command used. The table below shows the value limits
for the various data modes – the commas and spaces are
not part of the data value, but are only shown for easier
reading of the larger values. Leading zeroes can be
supplied, but as with the address value, they are ignored.
The translator in this case is not required to accept more
than ten ASCII characters for a data value.

DATA
MODE

DECIMAL
DATA LIMITS

HEXADECIMAL
DATA LIMITS

SING 0 to 255 0 to FF
DOUB 0 to 65,535 0 to FF FF
QUAD 0 to 4,294,967,295 0 to FF FF FF FF

 Some commands do not require data. In this case,
no data characters are supplied. Since there are no data
characters, the separator is not needed, and therefore is
omitted. The READ command does not require the
programmer to supply data; however, the programmer
will expect data to be returned. To specify the returned
data in hexadecimal form, the separator is used, followed
by the ASCII character "#". If the separator is omitted,
then the returned data will be in decimal form.

TERMINATOR

 The terminator clearly marks the end of the ASCII
string that is to be converted into a PACS® Sequence. The
terminator can either be an ASCII "space" character or a
"CR" (carriage return) character. The character that follows
the terminator will be interpreted by the translator as the
next PACS® Command character. Commands that do not
require data will have the terminator character follow the
address value.

CHAN ID COMMAND

 Since the CHAN ID command does not use
address information, a special format is provided for an
ASCII Translator. The format simply requires the user to
provide the CHAN ID number desired followed by a
terminator. Since all other commands start with an alpha
type character, the translator will interpret any command
starting with a numeric character as a CHAN ID
command. The CHAN ID value given can be any decimal
value from 0 to 1023. The translator is not required to
accept hexadecimal values.
 Leading zeroes can be supplied, but will be
ignored; however, the translator is not required to accept
more than four characters for the CHAN ID value. As

12

with all other commands, a terminator must follow the
CHAN ID value to mark an end to the ASCII command
string.

TIER COMMAND

 The TIER command is also formatted differently
from other commands since it does not utilize address or
data information. The ASCII command code for the TIER
command is the character "T" which is followed by the
desired tier number (a value from 0 to 255). The comma
separator follows the tier number to distinguish the tier
number from the desired CHAN ID value which follows
the separator. As with all commands, a terminator
character must follow the CHAN ID value to end the
command string.
 The translator will ignore leading zeroes for the
tier and CHAN ID values, but is not required to accept
more than three characters for the tier value and four
characters for the CHAN ID value. The translator is not
required to accept hexadecimal characters for either value.

SYNTAX ERRORS

 The format described in this section explains the
basic requirements for an ASCII Translator. Whenever
the translator is confronted with a character string that
does not conform to the format, a syntax error occurs. In
the event of such errors, the translator will ignore the
entire string, and usually will provide a means of letting
the user know of such errors. Syntax errors should be
debugged from a user’s program prior to implementing,
especially in applications where indexed addressing is
used. Following are some examples of syntax errors.

1. Invalid command character(s)
 BD123,34 ADS12,#0A
should be:
 SD123,34 ANS12,#0A

2. Invalid/missing data mode character
 ANT12,0 AN12,#10D8
should be:
 ANS12,0 AND12,#10D8

3. Missing "#" for hexadecimal address or data
 AD3F0,5 SD82,3C
should be:
 AD#3F0,5 SD82,#3C

4. Data supplied with an inherent command
 DD45,12
should be:
 DD45

5. Missing terminator between two strings. In this
example, both commands result in an error.
 ANS80,#AASS81,2
should be:
 ANS80,#AA SS81,2

 Some errors are programmer errors where the
translator will accept the string; however, the user obtains
incorrect results. Examples of this type of error are shown
below:

1. Missing address causing the command to be
interpreted as indexed addressing.
 CD,34 should be CD12,34

2. Incorrect data mode causing the incorrect
locations to be affected.
 CD12,1 should be CS12,1

 13

SECTION IV
PACS® Command Set

 This section is a complete listing of each PACS®
command. Each variation of the command along with a
summary of its operation is provided. Various symbols
used in this section are defined below. PACS® codes are
given in hexadecimal.

DEFINITION OF SYMBOLS

 a - ASCII address value
 d - ASCII data value
 DIR - direct addressing mode
 DOUB - double byte data mode (16 bit word)
 IND - indexed addressing mode
 QUAD - quad byte data mode (32 bit word)
 SING - single byte data mode (8 bit word)

PACS® COMMANDS

ASCII
CODE

COMMAND
NAME

A Add
AN And
C Change
D Decr
EO Ex Or
I Incr
L Level
OR Or
R Read
S Sub
none NOP
x Chan ID *
T Tier *

* Level 2 only

14

 A ADD

This command instructs the PACS® Slave to add the binary value of the
transmitted data to the binary value at the selected address. The result of the
addition becomes the new value at the selected address. Carry, overflow,
and two’s complement addition are the responsibility of the user.

DATA
MODE

ADDRESS
MODE

PACS
CODE

ADDRESS
BYTES

DATA
BYTES ASCII

SING DIR 64 2 1 ASa,d
DOUB DIR 84 2 2 ADa,d
QUAD DIR C4 2 4 AQa,d
SING IND 25 0 1 AS,d

DOUB IND 45 0 2 AD,d
QUAD IND 85 0 4 AQ,d

 AN AND

This command instructs the PACS® Slave to logically "and" each bit of the
transmitted data with the corresponding bit at the selected address. The
result of the operation becomes the new value at the selected address.

DATA
MODE

ADDRESS
MODE

PACS
CODE

ADDRESS
BYTES

DATA
BYTES ASCII

SING DIR 68 2 1 ANSa,d
DOUB DIR 88 2 2 ANDa,d
QUAD DIR C8 2 4 ANQa,d
SING IND 29 0 1 ANS,d

DOUB IND 49 0 2 AND,d
QUAD IND 89 0 4 ANQ,d

 C CHANGE

This command instructs the PACS® Slave to change the value at the
selected address to the value of the transmitted data.

DATA
MODE

ADDRESS
MODE

PACS
CODE

ADDRESS
BYTES

DATA
BYTES ASCII

SING DIR 62 2 1 CSa,d
DOUB DIR 82 2 2 CDa,d
QUAD DIR C2 2 4 CQa,d
SING IND 23 0 1 CS,d

DOUB IND 43 0 2 CD,d
QUAD IND 83 0 4 CQ,d

 15

 D DECR

This command instructs the PACS® Slave to decrement the value at the
selected address by one. A value of zero is decremented to all logical ones.

DATA
MODE

ADDRESS
MODE

PACS
CODE

ADDRESS
BYTES

DATA
BYTES ASCII

SING DIR 58 2 0 DSa
DOUB DIR 59 2 0 DDa
QUAD DIR 5A 2 0 DQa
SING IND 18 0 0 DS

DOUB IND 19 0 0 DD
QUAD IND 1A 0 0 DQ

 EO EX OR

This command instructs the PACS® Slave to logically "exclusive-or" each
bit of the transmitted data with the corresponding bit at the selected address.
The result of the operation becomes the new value at the selected address.

DATA
MODE

ADDRESS
MODE

PACS
CODE

ADDRESS
BYTES

DATA
BYTES ASCII

SING DIR 6C 2 1 EOSa,d
DOUB DIR 8C 2 2 EODa,d
QUAD DIR CC 2 4 EOQa,d
SING IND 2D 0 1 EOS,d

DOUB IND 4D 0 2 EOD,d
QUAD IND 8D 0 4 EOQ,d

 I INCR

This command instructs the PACS® Slave to increment the value at the
selected address by one. A value of all logical ones is incremented to zero.

DATA
MODE

ADDRESS
MODE

PACS
CODE

ADDRESS
BYTES

DATA
BYTES ASCII

SING DIR 2 0 ISa
DOUB DIR 2 0 IDa
QUAD DIR 2 0 IQa
SING IND 0 0 IS

DOUB IND 0 0 ID
QUAD IND 0 0 IQ

16

 L LEVEL

This command instructs the PACS® Slave to return a single byte value that
represents its PACS® Code level. The index pointer value remains
unchanged.

DATA
MODE

ADDRESS
MODE

PACS
CODE

ADDRESS
BYTES

DATA
BYTES ASCII

SING none 1C none 1 L

DATA BYTES indicates the number of bytes returned by the slave.

 OR OR

This command instructs the PACS® Slave to logically "or" each bit of the
transmitted data with the corresponding bit at the selected address. The
result of the operation becomes the new value at the selected address.

DATA
MODE

ADDRESS
MODE

PACS
CODE

ADDRESS
BYTES

DATA
BYTES ASCII

SING DIR 6A 2 1 ORSa,d
DOUB DIR 8A 2 2 ORDa,d
QUAD DIR CA 2 4 ORQa,d
SING IND 2B 0 1 ORS,d

DOUB IND 4B 0 2 ORD,d
QUAD IND 8B 0 4 ORQ,d

 R READ

This command instructs the PACS® Slave to return the value at the selected
address. The value at the selected address remains unchanged.

DATA
MODE

ADDRESS
MODE

PACS
CODE

ADDRESS
BYTES

DATA
BYTES ASCII

SING DIR 50 2 1 RSa,#
DOUB DIR 51 2 2 RDa,#
QUAD DIR 52 2 4 RQa,#
SING IND 10 0 1 RS,#

DOUB IND 11 0 2 RD,#
QUAD IND 12 0 4 RQ,#

DATA BYTES indicates the number of bytes returned by the slave.
ASCII codes omit the separator and # character for decimal values.

 17

 S SUB

This command instructs the PACS® Slave to subtract the binary value of
the transmitted data from the binary value at the selected address. The result
of the subtraction becomes the new value at the selected address. Borrow,
overflow, and two’s complement subtraction are the responsibility of the
user.

DATA
MODE

ADDRESS
MODE

PACS
CODE

ADDRESS
BYTES

DATA
BYTES ASCII

SING DIR 66 2 1 SSa,d
DOUB DIR 86 2 2 SDa,d
QUAD DIR C6 2 4 SQa,d
SING IND 27 0 1 SS,d

DOUB IND 47 0 2 SD,d
QUAD IND 87 0 4 SQ,d

 NOP NOP

This command instructs a PACS® Slave to perform no operation. The
purpose of the NOP command is to allow the master to operate the PACS®
lines without performing a specific operation. The seven data bytes that
must follow the FF NOP have no significant meaning and may be any value
desired. Note that there is no ASCII code assigned to this command.

PACS
CODE

DATA
BYTES

00 0
03 0
05 0
07 0
09 0
0B 0
0D 0
FF 7

18

 x (PACS® Level 2 only) CHAN ID

This command instructs a PACS® Slave or Interchange to enable the
selected memory bank or communication channel to another PACS® Slave.
A PACS® Slave may perform no operation in response to this command.

PACS
CODE

DATA
BYTES OPERATION

3C 1 Data byte = selected bank or channel

3D 1 Data byte + 256 = selected bank or channel

3E 1 Data byte + 512 = selected bank or channel

3F 1 Data byte + 768 = selected bank or channel

For ASCII code, any decimal value from 0 to 1023 that appears between
two terminators will represent the selected bank or channel.

 T (PACS® Level 2 only) TIER

This command instructs a PACS® Interchange to pass a CHAN ID
command to its currently active communication channel. The second byte
of the command sequence represents the selected bank or channel in the
desired slave or interchange. The third byte of the command sequence,
designated as t, represents the targeted tier where the desired slave or
interchange is connected. A standard PACS® Slave may either perform no
operation or use the tier and CHAN ID values to select additional memory
banks. An interchange will respond to the TIER command as follows:

1. If t = 0, the interchange will execute the CHAN ID command defined

by the 2nd byte (see table below).

2. If t > 0 and the active channel is 0, the interchange cannot pass the tier

command on to itself; therefore, it may either perform no operation,
or it may use the tier and CHAN ID values to select additional internal
memory banks.

3. If t > 0 and the active channel is not 0, the interchange will decrement

the value of t by one and then pass the modified command to the
active channel.

PACS
CODE OPERATION

5C 2nd byte = selected bank or channel

5D 2nd byte + 256 = selected bank or channel

5E 2nd byte + 512 = selected bank or channel

5F 2nd byte + 768 = selected bank or channel

The ASCII format for this command is Tt,x, where t represents the
targeted tier, and x represents the selected bank or channel.

 19

APPENDIX A
PACS® Reference Guide

 PACS®
CODE

ASCII

DATA
MODE

ADDR
MODE

 PACS®
CODE

ASCII

DATA
MODE

ADDR
MODE

A
ADD

64 ASa,d SING DIR L
LEVEL

84 ADa,d DOUB DIR 1C L SING
C4 AQa,d QUAD DIR
25 AS,d SING IND
45 AD,d DOUB IND
85 AQ,d QUAD IND OR

OR

6A ORSa,d SING DIR
 8A ORDa,d DOUB DIR

AN
AND

68 ANSa,d SING DIR CA ORQa,d QUAD DIR
88 ANDa,d DOUB DIR 2B ORS,d SING IND
C8 ANQa,d QUAD DIR 4B ORD,d DOUB IND
29 ANS,d SING IND 8B ORQ,d QUAD IND
49 AND,d DOUB IND
89 ANQ,d QUAD IND R

READ

50 RSa,# SING DIR
 51 R#a,# DOUB DIR

C
CHANGE

62 CSa,d SING DIR 52 RQa,# QUAD DIR
82 CDa,d DOUB DIR 10 RS,# SING IND
C2 CQa,d QUAD DIR 11 R#,# DOUB IND
23 CS,d SING IND 12 RQ,# QUAD IND
43 CD,d DOUB IND
83 CQ,d QUAD IND S

SUB

66 SSa,d SING DIR
 86 SDa,d DOUB DIR

D
DECR

58 DSa SING DIR C6 SQa,d QUAD DIR
59 DDa DOUB DIR 27 SS,d SING IND
5A DQa QUAD DIR 47 SD,d DOUB IND
18 DS SING IND 87 SQ,d QUAD IND
19 DD DOUB IND
1A DQ QUAD IND NOP 00 no ASCII

 03 no ASCII

EO
EX OR

6C EOSa,d SING DIR 05 no ASCII
8C EODa,d DOUB DIR 07 no ASCII
CC EOQa,d QUAD DIR 09 no ASCII
2D EOS,d SING IND 0B no ASCII
4D EOD,d DOUB IND 0D no ASCII
8D EOQ,d QUAD IND FF no ASCII

I
INCR

54 ISa SING DIR x
CHAN ID

3C 0-255
55 IDa DOUB DIR 3D 256-511
56 IQa QUAD DIR 3E 512-767
14 IS SING IND 3F 768-1023
15 ID DOUB IND
16 IQ QUAD IND T

TIER

5C Tt,x (channels 0-255)
 5D Tt,x (channels 256-511)
 5E Tt,x (channels 512-767)
 5F Tt,x (channels 768-1023)

 1989,  2008 Peaktronics, Inc.

20

APPENDIX B
ASCII Conversion Table

HEX BINARY ASCII

 00 0000 0000 NUL
 01 0000 0001 SOH
 02 0000 0010 STX
 03 0000 0011 ETX
 04 0000 0100 EOT
 05 0000 0101 ENQ
 06 0000 0110 ACK
 07 0000 0111 BEL
 08 0000 1000 BS
 09 0000 1001 TAB
 0A 0000 1010 LF
 0B 0000 1011 VT
 0C 0000 1100 FF
 0D 0000 1101 CR
 0E 0000 1110 S0
 0F 0000 1111 S1

 10 0001 0000 DEL
 11 0001 0001 DC1
 12 0001 0010 DC2
 13 0001 0011 DC3
 14 0001 0100 DC4
 15 0001 0101 NAK
 16 0001 0110 SYN
 17 0001 0111 ETB
 18 0001 1000 CAN
 19 0001 1001 EM
 1A 0001 1010 SUB
 1B 0001 1011 ESC
 1C 0001 1100 FS
 1D 0001 1101 GS
 1E 0001 1110 RS
 1F 0001 1111 US

 20 0010 0000 SP
 21 0010 0001 !
 22 0010 0010 "
 23 0010 0011 #
 24 0010 0100 $
 25 0010 0101 %
 26 0010 0110 &
 27 0010 0111 '
 28 0010 1000 (
 29 0010 1001)
 2A 0010 1010 *

HEX BINARY ASCII

 2B 0010 1011 +
 2C 0010 1100 ,
 2D 0010 1101 -
 2E 0010 1110 .
 2F 0010 1111 /

 30 0011 0000 0
 31 0011 0001 1
 32 0011 0010 2
 33 0011 0011 3
 34 0011 0100 4
 35 0011 0101 5
 36 0011 0110 6
 37 0011 0111 7
 38 0011 1000 8
 39 0011 1001 9
 3A 0011 1010 :
 3B 0011 1011 ;
 3C 0011 1100 <
 3D 0011 1101 =
 3E 0011 1110 >
 3F 0011 1111 ?

 40 0100 0000 @
 41 0100 0001 A
 42 0100 0010 B
 43 0100 0011 C
 44 0100 0100 D
 45 0100 0101 E
 46 0100 0110 F
 47 0100 0111 G
 48 0100 1000 H
 49 0100 1001 I
 4A 0100 1010 J
 4B 0100 1011 K
 4C 0100 1100 L
 4D 0100 1101 M
 4E 0100 1110 N
 4F 0100 1111 O

 50 0101 0000 P
 51 0101 0001 Q
 52 0101 0010 R
 53 0101 0011 S
 54 0101 0100 T

HEX BINARY ASCII

 55 0101 0101 U
 56 0101 0110 V
 57 0101 0111 W
 58 0101 1000 X
 59 0101 1001 Y
 5A 0101 1010 Z
 5B 0101 1011 [
 5C 0101 1100 \
 5D 0101 1101]
 5E 0101 1110 ^
 5F 0101 1111 _

 60 0110 0000 \
 61 0110 0001 a
 62 0110 0010 b
 63 0110 0011 c
 64 0110 0100 d
 65 0110 0101 e
 66 0110 0110 f
 67 0110 0111 g
 68 0110 1000 h
 69 0110 1001 i
 6A 0110 1010 j
 6B 0110 1011 k
 6C 0110 1100 l
 6D 0110 1101 m
 6E 0110 1110 n
 6F 0110 1111 o

 70 0111 0000 p
 71 0111 0001 q
 72 0111 0010 r
 73 0111 0011 s
 74 0111 0100 t
 75 0111 0101 u
 76 0111 0110 v
 77 0111 0111 w
 78 0111 1000 x
 79 0111 1001 y
 7A 0111 1010 z
 7B 0111 1011 {
 7C 0111 1100 |
 7D 0111 1101 }
 7E 0111 1110 ~
 7F 0111 1111 DEL

 www.peaktronics.com
PEAKTRONICS, Inc. 1363 Anderson Clawson, MI 48017 Phone (248) 542-5640 FAX (248) 542-5643

